Лукиных В.Ф.,

к.ф-м.н., доцент,

декан факультета международного бизнеса Сибирского государственного аэрокосмического университета, г. Красноярск

Аврамчикова Н.Т.,

к.э.н., доцент кафедры международного бизнеса Сибирского государственного аэрокосмического университета, г. Красноярск

Методические основы интерференции волновых процессов при пространственной диффузии нововведений

В статье «Методические основы интерферирования волновых процессов при пространственной диффузии нововведений» рассмотрены процессы взаимодействия в экономическом пространстве соседних территорий волн нововведений, исходящих от различных источников в полюсе роста. При этом выявлено, что возникает процесс взаимодействия указанных волн - процесс интерференции, определяющий количественное и качественное состояние результирующих волн. Распространение волн можно рассматривать как передачу инноваций от разных источников в пространстве, а интенсивность этого волнового процесса есть величина, пропорциональная интенсивности источников волн и коэффициенту фазового согласования волн разных источников в конкретной точке пространства. Состояние интерференции рассмотрено в условиях влияния нововведений полюса роста на территории, находящиеся в зоне его влияния.

На примере сырьевого региона — Красноярского края рассмотрены методы определения импульса инноваций от полюсов роста Нижнего Приангарья и г. Канск в слаборазвитые территории (Абанский район), которые находятся в зоне его влияния. При пространственной диффузии нововведений, имеющей волнообразный характер, как отмечается в статье, могут возникать интерференционные явления, приводящие к усилению или ослаблению интенсивности инновационных процессов.

Смена парадигмы пространственного развития предполагает, прежде всего, осуществление политики поляризованного развития регионов Российской Федерации и формирование регионов - локомотивов роста, способных обеспечить развитие экономического пространства как на территории отдельного региона, так и посылать импульсы (волны), стимулирующие создание нововведений в соседних территориях, вместо политики выравнивания уровня социально-экономического развития регионов.

Для описания развития периферийных территорий (выходящих за пределы центров и осей развития) в региональных исследованиях западноевропейских экономистов широко используется теория поляризованного развития пространства Ф.Будвиля и схема диффузии нововведений Т. Хэгерстранда.

Т.Хэгерстранд [1] в схеме диффузии нововведений применил математические методы, что позволило получить строгие и оригинальные результаты. Он изучил процесс диффузии нововведений как волновое явление.

Подобный подход оказался плодотворным и приемлем ко многим другим проблемам, которые могут исследоваться с позиций их пространственновременной динамики.

Т. Хэгерстранд, впервые, опираясь на эмпирические данные, описал влияние соседства территорий на пространственную диффузию нововведений. Он исследовал способы прохождения информации через систему районов и закономерности обмена информацией между районами: с какой скоростью и по каким каналам распространяются волны диффузии. Восприятие новшеств рассматривалось с учетом психологических особенностей людей; было показано сопротивление принятию новшеств, дана математическая модель диффузии, показаны возможности определения избыточности и недостаточности контактов людей с пространственно - временной точки зрения.

Нами рассмотрены процессы взаимодействия в экономическом пространстве соседних территорий волн нововведений, исходящих от различных источников нововведений в полюсе роста. При этом выявлено, что возникает процесс взаимодействия указанных волн - процесс интерференции, определяющий количественное и качественное состояние результирующих волн. Интерференция волн - сложение в пространстве двух или более волн, при котором происходит усиление или ослабление амплитуды результирующей волны. Интерференция свойственна волнам любого типа [3].

Распространение волн можно рассматривать как передачу инноваций от разных источников в пространстве, а интенсивность этого волнового процесса есть величина, пропорциональная интенсивности источников волн и коэффициенту фазового согласования волн разных источников в конкретной точке пространства.

Состояние интерференции нами рассмотрено в условиях влияния нововведений полюса роста на территории, находящиеся в зоне его влияния.

Рассматривались волны нововведений от разных источников, колеблющихся с соответствующими им фазовыми сдвигами относительно друг друга. При этом взаимодействии параметры результирующей волны находятся в зависимости от параметров взаимодействующих волн, а величина амплитуды результирующей волны зависит от фазового согласования взаимодействующих волн [4].

В случае двух волн известно, что:

Ирез. =
$$2 \text{ Ио*F}$$
, (1)

где Ирез. – суммарная интенсивность двух волн, Ио – интенсивность одной волны, F – коэффициент фазового рассогласования интерферирующих волн.

При этом амплитуды волн Арез. и Ао связаны соотношением

$$AIpe3 = 2 AIo *F$$
 (2)

В случае нескольких волн:

Ирез. =NI
$$*$$
Ио, (3)

где N – количество источников волн, Ио – интенсивность отдельного источника.

Следует отметить, что в пространственной среде территории диффундируют волны нововведений разной частоты. При этом интерференция возможна между всеми волнами, но в течение определенного времени, так называемого вре-

мени когерентности, в течение которого возникает фазовое согласование между волнами, приводящее к интерференции в течение этого времени. В процессе интерференции может возникнуть либо положительный эффект в виде резонанса (роста интенсивности), либо отрицательный в виде резонансного уменьшения суммарной интенсивности волн, что определяется количественными параметрами фазового согласования.

Волнообразное движение в экономическом пространстве возникает в случае организации нового полюса роста в виде нового производства товаров или услуг, при этом, чем выше технологический уклад, тем значительнее сила исходящих от производства волн. Различные производства, организованные в полюсе роста формируют волны разной интенсивности и разной частоты.

Если нет потерь, то вся переданная энергия должна быть получена и общая интенсивность двух и более источников инноваций представляет собой выражение (3). Это значит, что общая интенсивность инноваций в отдельной точке пространства может быть значительно больше из-за усиления интерферирующих волн в точках фазового согласования.

Таким образом, импульсы инноваций с одной и той же амплитудой, но с разной фазой могут давать в результате различную суммарную интенсивность. Так, значение интенсивности суммы двух импульсов может меняться от нуля до удвоенной величины. С другой стороны, если несколько процессов в различных точках пространства обладают различными фазовыми соотношениями, то происходит таким образом перераспределение энергии инноваций в пространстве с образованием минимумов и максимумов. При этом не происходит нарушения закона сохранения энергии, так как минимумы и максимумы имеют локальный характер, и общая энергия системы не меняется.

Интерференцию волн инноваций возможно моделировать. Явления, происходящие в результате интерференции двух волн пространственной диффузии весьма удобно могут быть истолкованы графическими приемами.

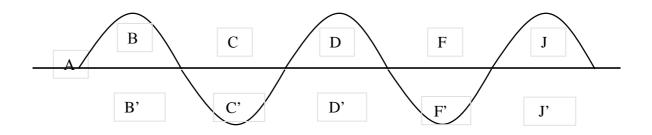


Рис. 1. Волны пространственной диффузии нововведений

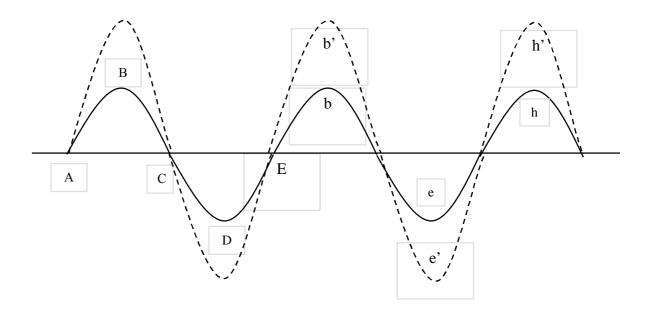


Рис. 2 Интерференция волновых процессов при пространственной диффузии нововведений

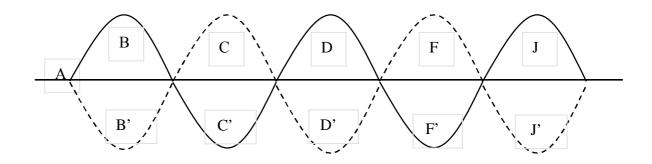


Рис. 3. Явления противофазы интерферирующих волн

Рисунок 2 изображает символически форму пространственной волны при диффузии нововведений в виде синусоидального колебания с длиной волны, равной AE.

Расстояние каждой точки кривой от оси абсцисс, показывает удаление этой точки от той, в которой она находилась в положении равновесия, т. е. до начала движения. Для удобства моделирования можно предположить, что все составные элементы инноваций, приходящиеся против выпуклой части кривой, движутся вперед по направлению распространения волн, а все точки против вогнутой ее части движутся назад. Рисунок 2 изображает символически две системы волн одинаковой длины, из которых одна система (изображенная сплошной линией) начинается в точке А, другая, изображенная пунктирной линией, - в точке Е. Расстояние между А и Е называется разностью хода и в случае, изображенном на

чертеже, составляет одну длину волны (разность хода на рисунке 2 определяется прямой линией, измеряемой длиной волны или ее частями).

Можно рассматривать изменение расстояния точек роста от оси абсцисс (положения равновесия) по формуле y = a Sin2 1t T/t, в которой y - есть искомое расстояние, а - амплитуда колебания или наибольшее расстояние точки от оси абсцисс, Т - продолжительность одного полного колебания, принимаемая за единицу времени, t - время, измеряемое этой единицей, протекшее от начала колебания элемента до рассматриваемого момента; п - есть численное отношение окружности к диаметру. Величина у, изменяющаяся от +а до -а, зависит от периодически изменяющейся величины 2п T/t или от T/t, т. е. от изменений фазы движения. (Вместо разности хода можно рассматривать разность фаз - заключения остаются одинаковыми). Начиная от точки Е обе волны интерферируют между собой, вследствие чего образуется новая система Ев"е"h"N, в которой волны будут иметь прежнюю длину, но амплитуды суммарных волн увеличатся, так как происходит интерференционный эффект резонансного усиления в результате наличия фазового согласования интерферирующих волн. При процессе пространственной диффузии на территории эффект интерференции можно интерпретировать следующим образом: увеличение или уменьшение амплитуд диффундирующих волн при одинаковой длине волн указывает на увеличение скорости их движения и на усиление степени сгущения и разрежения инноваций. В случае, изображенном на чертеже, две системы волн содействуют одна другой. Содействие волн и соответственное усиление движения элементов будут происходить вообще при разности хода, равной всякому целому числу волн или четному числу полуволн. Если бы обе системы начинались в точке А или точке С, и не было бы никакой разности хода (т. е. существовало фазовое согласование), то и в этом случае произошло бы то же самое.

На рисунке 3 видно, что в системе инновационных волн пространственной диффузии, сдвинутых по фазе на 180 градусов, можно представить, что одни элементы движутся вперед по направлению движения, в то время как другие движутся назад, и что в одном и том же месте движение вперед и назад в разных интерферирующих волнах происходит одновременно. В результате в каждый момент времени каждый элемент волны диффузии будет находиться в ситуации, когда на него будут действовать силы, направленные в противоположные стороны. В этом случае он останется неподвижным под влиянием двух равных и противоположных сил, т. е. волны уничтожатся и движения инноваций не будет.

Если бы в этом случае амплитуды волн обоих источников на рис. 3 были неодинаковы, то осталась бы часть преобладающей волны и инновационные волны только ослабели бы, а не уничтожились, как в первом случае. Итак, при указанной на рис. 3 разности хода волны противодействуют одна другой, как и вообще при разности хода, составляющей 1, 3, 5 - и любое другое нечетное число полуволн. Две системы инновационных волн, разность длин волн которых больше, чем полуволна, и меньше целой волны, интерферируя между собой, образуют новую систему волн, но при решении этого случая графически окажется, что новая система волн будет сдвинута относительно прежних, что интерпретируется так: сила движения инноваций будет слабее, чем при полном совпадении длин волн.

Методика интерференции инновационных волн еще вполне нова и для полной ясности требует решения ряда вопросов интерпретации фазового согласования в пространстве, но, по мнению авторов, данную методику можно применить при изучении процессов инновационного развития территорий.

На практике можно наблюдать, что одна и та же территория часто подвергается влиянию двух и более полюсов роста. Так, например, в Красноярском крае, под влиянием полюсов роста «Нижнее Приангарье» (на севере) и «город Канск» (на востоке) находится Абанский район, территориально расположенный между данными полюсами роста.

Одной из определяющих развитие данных полюсов роста отраслей, является лесозаготовительная и деревообрабатывающая промышленность. Заготовка и переработка древесины в городе Канске осуществляется такими значимыми для отрасли края предприятиями как 000 «Канский ЛДК», 000 «Красвуд» [5]. Основными видами деятельности являются лесозаготовка, лесопиление, глубокая переработка древесины. Сушка пиломатериалов осуществляется котельно-сушильным комплексом китайского производства. Кроме лесопиления приобретена и запущена линия глубокой переработки сухого пиломатериала для производства блочков и строганного погонажа. Поставка продукции осуществляется в страны дальнего зарубежья, такие как Египет, Великобритания, Ливан, в перспективе - Япония.

Основным поставщиком лесоматериалов (круглый лес и пиломатериалы) Нижнего Приангарья является Богучанский район, граничащий на севере с Абанским районом. Странами импортерами круглого леса являются Китай и Япония. Ведущими компаниями, работающими в лесном комплексе данного района являются 000 «Лесопромышленная компания «Континенталь - Менеджмент» и ЗАО «МС Менеджмент» («ЕврАзХолдинг»), в перспективе, в результате реализации крупнейшего инвестиционного проекта федерального значения «Нижнее Приангарье» [6]. В данном районе возможно строительство завода по производству древесных плит МДФ и целлюлоз но - бумажного комбината.

В ходе развития лесоперерабатывающей промышленности рассмотренных полюсов роста и применения ими новых современных технологий лесопереработки, неизбежно в зоне их влияния, в силу территориальной расположенности, окажется лесозаготовительная и деревообрабатывающая промышленность Абанского района [7]. Развитие данной отрасли в районе потребует переоснащения действующих предприятий и строительство новых, какие технологии при этом будут использоваться будут решать сами предприятия, под влиянием диффузии нововведений обоих полюсов роста, но при этом, надо полагать, их влияние будет удвоено, а инновационные волны будут взаимодействовать, либо они будут интерферировать при совпадении технологий, либо вступят в противофазу и старые технологии будут поглощены новыми, более современными.

ЛИТЕРАТУРА

- 1. Hagerstrand T. Innovation diffusion as a spatial process. Chicago: University of Chicago Press. 1968.
- 2. Hagerstrand T. Aspects of the Spatial Structure of Social Communication and the Diffusion of Information. In: Papers and Proceedings of the Regional Science Association. 1966.
- 3. Интерференция Викизнание. [Электронный ресурс] Режим доступа: http://www.wikiznanie.ru/ru-wz/index.php.
- 4. Элементы: Интерференция. [Электронный ресурс] Режим доступа: http://elementy.ru/trefil.
- 5. Комплексная программа социально экономического развития г. Канска на период до 2017 года.
- 6. Инвестиционный проект «Комплексное развитие Нижнего Приангарья». [Электронный ресурс] Режим доступа: http://www.regionalistica.ru
- 7. Программа Социально экономического развития Абанского района на период до 2017 года.
- 8. Гранберг, А. Зарубежный опыт региональной политики М.: Экономика, 2001.
- 9. Хлопонин, А. Точек роста на востоке страны множество /А. Хлопонин // Экономическое обозрение, 2007, февраль N2 1, C. 14 16.
- 10. Черкасова, С. Диффузия нововведений как способ социально экономического развития регионов (на примере республики Татарстан). Автореферат на соискание ученой степени кандидата географических наук, Новосибирск, 1997 г.
- 11. Орир Дж., Физика: пер с англ.-М.:Мир.1981.-288с.,ил.-Т.2.